Correspondence Regions and Structured Images
نویسندگان
چکیده
Finding correspondence regions between images is fundamental to recovering three dimensional information from multiple frames of the same scene and content based image retrieval. To be good, correspondence regions should be easily found, richly characterised and have a good trade-off between density and uniqueness. Maximally stable extremal regions (MSER’s) are amongst the best known methods to tackle this problem. Here, we present an implementation of the sieve algorithm that not only generates MSER’s but can also generate stable salient contours (SSC’s) in different ways. The sieve decomposes the image according to local grayscale intensities and produces a tree in nearly O(N) where N is the number of pixels. The exact shape of the tree depends on the criteria used to control the merging of extremal regions with less extreme neighbours. We call the resulting data structure a ‘structured image’. Here, a structured image in which MSER’s are embedded is compared with those associated with two types of SSC’s. The correspondence rate generated by each of these methods is compared using the standard evaluation method due to Mikalajczyk and the results show that SSC’s identified using colour and texture moments are generally better than the others.
منابع مشابه
Evaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملRange data acquisition using color structured lighting and stereo vision
This paper presents a new color-lighting/stereo method for 3D range data acquisition by combining color structured lighting and stereo vision. A major advantage of using stereo vision together with color stripes lighting is that there is no need to solve the problem of finding the correspondence between the color stripes projected by the light source and the color stripes observed in the images...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملRobot Motion Vision Pait I: Theory
A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...
متن کامل3-D surface reconstruction using spatial frequency based approaches under influence of perspective distortion
The use of local spatial frequency provides a powerful analytical tool for image analysis. This dissertation provides an improved solution to long-standing problems in stereo vision; foreshortening, ambiguous matches, detecting and handling discontinuities and occlusion, and quantitative evaluation of stereo results. Challenges arise from the fact that stereo images are acquired from slightly d...
متن کامل